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ABSTRACT

This paper examines the tradeoffs between computational cost and accuracy for two new state-of-the-art

codes for computing three-dimensional radiative transfer: a community Monte Carlo model and a parallel

implementation of the Spherical Harmonics Discrete Ordinate Method (SHDOM). Both codes are described

and algorithmic choices are elaborated. Two prototype problems are considered: a domain filled with stra-

tocumulus clouds and another containing scattered shallow cumulus, absorbing aerosols, and molecular

scatterers. Calculations are performed for a range of resolutions and the relationships between accuracy and

computational cost, measured by memory use and time to solution, are compared.

Monte Carlo accuracy depends primarily on the number of trajectories used in the integration. Monte Carlo

estimates of intensity are computationally expensive and may be subject to large sampling noise from highly

peaked phase functions. This noise can be decreased using a range of variance reduction techniques, but these

techniques can compromise the excellent agreement between the true error and estimates obtained from

unbiased calculations. SHDOM accuracy is controlled by both spatial and angular resolution; different output

fields are sensitive to different aspects of this resolution, so the optimum accuracy parameters depend on

which quantities are desired as well as on the characteristics of the problem being solved. The accuracy of

SHDOM must be assessed through convergence tests and all results from unconverged solutions may be

biased.

SHDOM is more efficient (i.e., has lower error for a given computational cost) than Monte Carlo when

computing pixel-by-pixel upwelling fluxes in the cumulus scene, whereas Monte Carlo is more efficient in

computing flux divergence and downwelling flux in the stratocumulus scene, especially at higher accuracies.

The two models are comparable for downwelling flux and flux divergence in cumulus and upwelling flux in

stratocumulus. SHDOM is substantially more efficient when computing pixel-by-pixel intensity in multiple

directions; the models are comparable when computing domain-average intensities. In some cases memory

use, rather than computation time, may limit the resolution of SHDOM calculations.

1. Computational methods for solving the radiative
transfer equation in three spatial dimensions

In the fundamental equation describing the transfer

of monochromatic unpolarized radiation in the atmo-

sphere the radiation field depends on two angular di-

mensions (the zenith and azimuthal angles) and three

spatial dimensions. In most applications of radiative trans-

fer in the atmospheric sciences this equation is simplified

by omitting the two horizontal spatial dimensions so that

the radiation field depends only on angle and vertical

location. The so-called 1D radiative transfer equation

may be used repeatedly to account for variability in the

horizontal dimension by assuming that there is no net

transfer of radiation in the horizontal. But this assump-

tion is not always valid, and differences between radiation

fields computed using 1D and 3D radiative transfer can

impact fluxes at the top and bottom of the atmosphere

(see, e.g., Scheirer and Macke 2003), local heating rates

(e.g., Di Giuseppe and Tompkins 2003), and especially
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the estimation of atmospheric properties from remotely

sensed radiation [e.g., Loeb et al. (1998) and Marshak et al.

(2006), among many others]. Differences between 3D and

1D results are most acute for problems involving clouds at

visible wavelengths, where multiple scattering is dominant

and cloud extinction varies on spatial scales smaller than

the radiation mean free path.

There are two main barriers to the use of three-

dimensional radiative transfer. First, specifying the prob-

lem can be quite difficult because this requires describing

the instantaneous distribution of extinction, single-

scattering albedo, and scattering phase function in three

spatial dimensions at very small scales. No current ob-

serving system is up to this task, although finescale cloud

models can provide useful test cases. Second, solving the

three-dimensional radiative transfer equation is much

more computationally expensive than solving its one-

dimensional counterpart.

There are two broad classes of methods for computing

radiative transfer in three-dimensionally inhomogeneous

atmospheres (see, e.g., Evans and Marshak 2005). Ex-

plicit methods discretize the radiation field in space, us-

ing discrete grids or finite elements, and in angle, using

discrete ordinates or spherical harmonics. The methods

start with a first-guess solution and iteratively adjust the

radiation field until it agrees with the radiative transfer

equation to some specified accuracy. The most widely used

explicit method in the atmospheric sciences is the Spher-

ical Harmonics Discrete Ordinate Method (SHDOM;

Evans 1998).

Explicit methods compute the full spatially and an-

gularly varying radiation field at once. This means that

any and all output quantities, from domain-averaged

top-of-atmosphere fluxes to cell-by-cell flux divergences,

can be derived from the same basic calculation without

much additional computation, but it also means that one

must do a complete calculation even if only a subset of

quantities is desired. The only way to assess accuracy

when using explicit methods is to check for convergence as

a function of algorithm accuracy parameters. All quan-

tities from an unconverged solution, including domain

averages, may be biased. Explicit methods are difficult

to formulate as parallel algorithms and are often limited

by the amount of memory available for a calculation.

Monte Carlo methods, in contrast, solve the radiative

transfer equation (expressed as an integral over orders

of scattering) by computing a large number of discrete

trajectories through the full radiation field. In the at-

mospheric sciences Monte Carlo methods are usually

described as simulating the trajectories of individual

photons, although this explanation is fundamentally

incorrect (see, e.g., Mishchenko 2008). Samples are fol-

lowed from their introduction into the medium through

a series of scattering and absorption events until they are

either completely absorbed or exit the medium.

Monte Carlo methods are extremely flexible and al-

low for the calculation of almost any quantity, including

some (e.g., the distribution of path lengths) that cannot

be computed by explicit methods. Basic radiation trans-

port algorithms allow for the computation of fluxes and

flux divergences rates; intensity calculations add signifi-

cant computational cost. Accuracy comes slowly in Monte

Carlo calculations, increasing as the inverse square root

of the number of samples, but the uncertainty can be

estimated by dividing the total number of samples into

batches and computing the standard error of the set of

batches. Each trajectory represents an independent

sample of the full solution, so integral quantities are

more accurate than spatially or angularly resolved esti-

mates for a given number of trajectories. Monte Carlo

methods are embarrassingly parallel because any subset

of the complete calculation, down to the level of indi-

vidual trajectories, can be computed independently.

Both explicit and Monte Carlo methods can provide the

correct answer to a given problem in three-dimensional

radiative transfer given sufficient resources. The compu-

tational costs of the solution, however, can vary tre-

mendously between the two approaches. The relative

efficiency of the methods depends on what quantities are

required and the size and complexity of the problem

domain.

This paper examines the tradeoffs between cost and

accuracy for SHDOM, an explicit method recently re-

formulated as a parallel algorithm, and a freely available

Monte Carlo radiative transfer for monochromatic

problems in unpolarized solar radiative transfer. The

next section describes the new Monte Carlo model in-

cluding details about the computational structure and

algorithms; the following section describes how SHDOM

has been adapted to run on multiple processors and how

this impacts the computational cost. We describe two

prototype problems in three-dimensional radiative trans-

fer, consider the impact of resolution and algorithmic

parameters in both models, and then compare the rela-

tionships between computational cost and accuracy in

solving these problems for both SHDOM and the Monte

Carlo model. The final section distills these results and

other considerations into guidelines for choosing the most

computationally efficient method for a given radiative

transfer problem.

Throughout the paper we assume that readers are

generally familiar with both the SHDOM algorithm

(Evans 1998) and Monte Carlo simulations of radiative

transfer. For an overview of the latter, we recommend

Iwabuchi’s (2006) lucid introduction or Evans and

Marshak (2005) for more mathematical detail and rigor.

3132 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66



2. The I3RC community Monte Carlo model

One of the goals of the International Intercomparison

of Three-Dimensional Radiation Codes project (I3RC;

see Cahalan et al. 2005) is to foster the development and

sharing of tools for computing three-dimensional radi-

ative transfer. At the time of the first I3RC workshop

(November 1999), SHDOM was the only freely dis-

tributed tool available for computing three-dimensional

radiative transfer. Scientists wishing to use Monte Carlo

methods had to write their own code or obtain one from a

colleague. To facilitate the use of Monte Carlo methods,

the project sponsored the development of a Monte Carlo

model, intended for use in both research and education,

based on requirements developed by members of the

I3RC community. We implemented this model, which

has been available online (at http://i3rc.gsfc.nasa.gov/

I3RC_community_model.htm) since August 2006 and

which is also available on Google Code (http://code.

google.com/p/i3rc-monte-carlo-model/). Calculations in

this paper were done with the Cornish–Gilliflower release

of March 2009. Spurred in part by results from the I3RC

project, several other Monte Carlo codes have become

available in the intervening years, including the Grimaldi

and Monte Carlo–University of Kiel (MC-UNIK) models

(http://www.ifm-geomar.de/index.php?id5981) and the

Monte Carlo Atmospheric Radiative Transfer Simulator

(MCARaTS; http://www.geocities.jp/null2unity/mcarats/).

a. Computational architecture

The I3RC Community Monte Carlo radiative transfer

code is written as a series of modules and several pro-

grams in object-oriented FORTRAN 95. Each module

corresponds to a different conceptual aspect of the prob-

lem (a single scattering phase function, an incoming stream

of radiation, a domain filled with clouds, aerosols, and

gases, and so on) and contains the definitions for one or

more derived types and a set of procedures that operate on

those derived types. Procedures outside a module do not

have access to the internal data structures; this data must

be accessed or modified through procedures defined by the

module. Modules may build on one another: the module

used to describe the distribution of optical properties

within a domain, for example, uses the variables describing

scattering phase functions. The majority of the modules

and the relationships between them are shown in Fig. 1.

Object-oriented programming is the practice of pack-

aging data structures together with the procedures that

act on them. The technique is not often used in the at-

mospheric sciences but has proved very valuable in

other communities because it provides a way to divide a

problem into conceptually separate parts. This makes it

easier to test individual software elements as isolated

units, which in turn helps programmers identify errors

more quickly. Because objects store data locally it is

possible to describe, validate, or solve a problem in

steps, rather than assembling every piece of input data,

output space, and algorithmic detail into a single sub-

routine call. Local copies of data also facilitate the use of

code in parallel environments. Finally, object-oriented

programming makes it possible to reuse elements of the

software—one could write an interface that would apply

a plane-parallel radiative transfer model to each column

in a three-dimensionally variable domain, for example, or

FIG. 1. Software modules used to describe radiative transfer in a three-dimensionally varying

atmosphere and the relationships of those modules as used in the I3RC Community Monte Carlo

model. Each box represents a distinct module; one box containing another indicates that the

module represented by the outer box relies on the facilities provided by the inner box. Arrows

indicate objects supplied as part of the problem definition or solution in the Monte Carlo model.
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replace any module in our code with one that implemented

the same procedures. There are two major drawbacks,

both related to the encapsulation of data within objects:

first, that extra coding is required to provide access to this

data, and second, that the code may be less efficient, in

terms of processing time or memory, at completing tasks

than architectures where data is manipulated directly.

The heart of the I3RC Community Monte Carlo model

is a monochromatic integrator. This solver processes a

series of samples (‘‘photons’’) using forward Monte Carlo

to provide estimates of radiative quantities. The problem

is specified by using other modules to describe the dis-

tribution of optical properties of an arbitrary number of

components (e.g., clouds, aerosols, gases, etc.) within a

three-dimensional domain. Scattering phase functions for

each component are tabulated at discrete values of some

parameter (typically the particle size) and a single entry

from this table represents the phase function within each

grid cell.

b. Algorithmic aspects

The integrator provided with the I3RC model imple-

ments both straightforward ray tracing and maximum

cross section (Marchuk et al. 1980) algorithms to com-

pute the sample trajectories. We have found ray tracing

to be more efficient in most applications. Cost increases

for both algorithms with the optical depth of the me-

dium and with the number of cells into which the me-

dium is divided. Figure 2a shows this dependency for a

conservatively scattering plane-parallel medium with

scattering phase functions appropriate to a distribution

of cloud drops with effective radius 8.8 mm, normalized

by the time for the simplest case (lowest optical depth

and single-celled domain).

FIG. 2. Costs to compute radiative transfer using Monte Carlo

methods in a plane-parallel medium as a function of optical thickness.

(a) Cost as a function of domain size relative to the cost for a single

cell. Horizontal resolution is uniform in each dimension; there are

one-fourth as many layers in the vertical as cells in each horizontal

dimension. (b) Additional time required to compute intensity as a

function of viewing zenith angle, relative to the cost of the radiation

transport calculation at that optical thickness. Solid lines represent

the nominal cost; dashed lines show the cost using Russian roulette

adapted for intensity by Iwabuchi (2006). (c) Time to solution using

Russian roulette during radiation transport (flux) calculations, rela-

tive to calculations without the method, as a function of single scat-

tering coalbedo 1 2 v0. Values less than one indicate time savings.

Savings at small optical depths occur because samples reflect by the

dark surface have small weights. In all panels the solar zenith angle

is m0 5 0.707, the surface is a Lambertian reflector with an albedo

of 0.05, and scattering phase functions are representative of cloud

droplets in the visible. The medium in the top and bottom panels

scatters conservatively. In the lower two panels the domain is divided

into 100 cells in each horizontal direction and 25 vertical layers.
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The integrator can also provide estimates of intensity in

arbitrary directions using local estimation. This technique

involves accumulating the extinction from each scat-

tering location to the boundary of the medium along

each direction in which intensity is desired, so it requires

additional computational time, which increases with the

number of cells that must be traced to the boundary at

each scattering event. The solid lines in Fig. 2b quantify

this cost in a plane-parallel medium.

c. Methods for reducing computation time

Most Monte Carlo models treat absorption by multi-

plying the weight w of each sample by the single scat-

tering albedo v0 of the scattering medium at each

interaction. Sample weights may similarly become small

after reflection from a surface with small, but nonzero,

reflectance, or after multiple scattering in atmosphere

with v0 , 1; in either case, small sample weights make

small contributions to the overall radiative transfer

calculation. Russian roulette is a technique in which

samples with small w are resampled by adjusting w ac-

cording the value of a uniform random number r; that is,

w9 5
0 for r $ w/W

W for r , w/W
(1)

[see Eq. (6) in Iwabuchi 2006, and references therein].

Normally W 5 1. Time savings result because the sample

terminates when w9 5 0. Unlike simply truncating very

weak samples (see, e.g., section 5a of Barker et al. 2003),

Russian roulette does not introduce bias, but it de-

creases the time to solution by an amount depending on

the optical depth of the medium, the single scattering

albedo, and the surface albedo. Figure 2c shows the ratio

of the cost of radiation transport (e.g., flux calculations)

computed using Eq. (1) to the cost of the same calculation

without using Russian roulette. Savings at small values of

optical thickness in this example arise because samples

reflected from the dark surface (albedo 0.05) have small

weights, so that most are terminated by Eq. (1); if the

underlying surface were absorbing or perfectly reflecting,

no time would be saved in optically thin media.

Iwabuchi (2006) adapted Russian roulette for use

during using local estimation. At each scattering event

the local estimate may be small if either (a) the phase

function at the angle between the direction of travel and

the direction of the intensity is small or (b) the inte-

grated extinction between the scattering location and

the medium boundary is large; in both cases small con-

tributions are replaced with Russian roulette estimates

[see Eqs. (13) and (14) in Iwabuchi 2006]. This reduces

the number of paths that must be traced from scattering

locations to the medium boundary during local estima-

tion. The cost of intensity calculations using this algo-

rithm, relative to the cost of radiation transport (e.g., flux

calculations), is shown by dashed lines in Fig. 2b; con-

siderable time is saved relative to equivalent calculations

that do not use Russian roulette during local estimation,

particularly at large optical depths and low viewing ze-

nith angles. The method, like Eq. (1), is unbiased.

d. Methods for reducing variance in intensity
calculations

At visible wavelengths the scattering phase function

for cloud drops has a strong forward peak due to dif-

fraction. This poses a particular problem for local esti-

mation: collisions in which the sample is oriented in one

of the directions at which intensity is desired are very

rare, but the phase function is so large that just a few

collisions can dominate the intensity estimate. If the

number of samples per batch is moderate, these poorly

sampled events can lead to large values of standard error

in intensity estimates. This problem is resolved when

averaging over very large numbers of samples, but the

requisite amount of simulation can be computationally

daunting if pixel-by-pixel intensities are desired.

1) MODIFYING THE SCATTERING PHASE

FUNCTION USED FOR INTENSITY

CALCULATIONS

One alternative is to modify the calculation, typically

by modifying the scattering phase function used for local

estimation (see, e.g., Antyufeev 1996; Barker et al. 2003;

Iwabuchi 2006). This reduces the variance between

batches but may introduce biases in intensity estimates.

(The phase functions used during transport are not af-

fected, so estimates of flux and flux divergence are un-

changed.) As one such variance-reduction method, the

I3RC Community Monte Carlo model provides the

ability to replace the scattering phase function used for

local estimation with a hybrid:

~P(cosQ) 5
P

G
(Q) for Q # Q

m
,

P(Q) for Q . Q
m

,
(2)

where P(Q) is the original phase function, Qm the

matching angle, and PG(Q) a Gaussian. Users specify

the width of the Gaussian sG and the value of Qm is

chosen so that P(Qm) 5 PG(Qm). The value of Qm

is roughly commensurate with sG but its exact value

depends on the magnitude of the forward peak in the

original phase function. (In the calculations described

in section 4, for example, Qm/sG lies between 1.4 and

1.8 for cloud effective radii between 1.5 and 18 mm.)

The Gaussian phase function is normalized to ensure

that
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ð1

cos(Q
m

)

P
G

(cosQ)d cosQ 5

ð1

cos(Q
m

)

P(cosQ)d cosQ. (3)

The original phase function P(Q) can be used for local

estimation during the first Ne orders of scattering.

Any method that modifies the phase function for local

estimation will have tradeoffs between decreased stan-

dard error and increased absolute error. Figure 3 shows

these relationships for Eq. (2) in homogeneous media

using a scattering phase function appropriate for a dis-

tribution of cloud drops with effective radius 8.8 mm. In

these calculations the sun is at 608; intensity errors are

computed as the root-mean-square (RMS) error over 31

viewing directions in the principal plane from zenith to

758 in the forward- and back-scattering directions. The

decrease in standard error is expressed as the factor by

which run time would need to be increased to make

the standard error in the unmodified calculation match

the standard error using Eq. (2) (i.e., by the square of the

ratio of the standard errors). Standard error decreases

steeply and error increases slowly as sG increases and

the full phase function is modified more dramatically,

although the error increases for smaller optical thickness

as low-order scattering contributions become more im-

portant. Using Eq. (2) only when Ne . 2 (dashed lines)

decreases the error by a factor of 2 or more but also

decreases the amount of variance reduction, particularly

at small optical thicknesses where low orders of scat-

tering dominate the local estimate. Both error and the

amount of variance reduction are influenced by the

surface albedo at low optical depths, and both would

approach zero if the underlying surface were black.

2) REDISTRIBUTING INTENSITY IN SPACE

The I3RC Community Monte Carlo Model also im-

plements a novel method introduced by Barker et al.

(2003) for reducing the variance of intensity estimates

by smoothing the estimate in space. Especially large

contributions during the local estimation are truncated.

The excess is accumulated and, at the end of the calcu-

lation, distributed throughout the domain in an amount

proportional to the intensity itself. This acts to reduce

the pixel-to-pixel variance in intensity. Domain-mean

intensity is unaffected, though the method tends to re-

duce the highest values of intensity and enhance the

lowest values (Barker et al. 2003), with the result that

the error characteristics for spatially resolved intensity

depend strongly on the problem being solved.

3. SHDOM as a parallel explicit method

In principle, the term ‘‘spherical harmonics discrete

ordinate method’’ (see Evans 1998) describes an algo-

rithm; in practice, it also describes a freely available

code that implements the algorithm. SHDOM repre-

sents the radiation field by discretizing the angular de-

pendence with a spherical harmonics series and the

FIG. 3. Tradeoffs between bias and amount of variance reduc-

tion using a hybrid phase function for local estimation in homog-

enous clouds. Solid lines indicate results for the phase function

defined by Eq. (2); dashed lines show results when local estimates

at the first two orders of scattering use the original phase function

(Ne 5 2). (a) RMS normalized error in intensity over 31 equally

spaced upwelling viewing angles in the principal plane, as a

function of the cloud optical thickness and the width sG of the

Gaussian phase function used to blunt the highly peaked original

phase functions. Contours are every 1%, and the error for Ne 5 2

lies in the range 0.5%–1.5% everywhere. (b) The amount of var-

iance reduction achieved, expressed as the factor by which com-

putation time for the unmodified time would need to be increased

to reach this level of standard error. Contours are at factors of

2, 4, 6, . . . . Variance reduction can only be achieved at the cost

of introducing bias, but a useful compromise may be possible for

some applications.
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spatial dependence on a Cartesian grid. The radiative

source function is stored as a variable-length series of

spherical harmonics. The radiative transfer equation is

solved iteratively by 1) transforming the source function

from spherical harmonics to discrete ordinates, 2) inte-

grating the product of the source function and trans-

mission along discrete ordinates, 3) transforming the

discrete ordinate intensities to spherical harmonics, and

4) calculating the source function from the intensity

in spherical harmonics space. To achieve higher accur-

acy with a limited amount of memory, an adaptive grid is

implemented in which regions where the source function

is changing more rapidly have a higher density of grid

points. The horizontally uniform ‘‘base grid’’ on which

the problem is defined is supplemented as required by

adaptive grid points formed by splitting cells in half

during the solution iterations.

a. Reformulation of SHDOM as a parallel algorithm

SHDOM has been reformulated as a parallel code.

Parallelism is achieved using the Message Passing Inter-

face (MPI; see, e.g., https://computing.llnl.gov/tutorials/

mpi/), which supports both shared- and distributed-

memory environments. Parallel calculations require a

horizontally periodic domain. Using SHDOM in a par-

allel mode can decrease the wall-clock time to solution

but, perhaps more importantly, it allows for the solution

to much larger problems than the serial version, since

the memory required to represent the radiation field

may be distributed among processors.

The computational domain is divided among proces-

sors with base grid points repeated on both sides of each

boundary. Data are passed between neighboring pro-

cessors during three steps in the algorithm: 1) the direct

beam solar flux calculation at each internal grid point,

2) the radiative transfer equation integrations along

each discrete ordinate during the solution iterations, and

3) the integrations along the viewing directions for the

intensity output. Data transfer to and from files at the

beginning and end of the calculation are handled by a

single processor.

The majority of data transfer occurs during the solu-

tion iterations (step 2 in the previous paragraph). Dur-

ing those iterations, the discrete ordinate integrations

proceed backward from each grid point until a cell face

is reached for which the intensities are known at all four

corner grid points. When using a single processor, the

backward integration usually stops after just one grid

cell because of the discrete ordinate octant dependent

‘‘sweeping’’ order. For each horizontal plane of grid

points, however, there is one line of grid points for which

the integration must travel back to the previous plane to

reach grid points with known intensities. For multiple

processors, the ‘‘upwind’’ grid points on each processor

subdomain boundary are calculated (for one ordinate

direction and one horizontal plane of base grid points at a

time) with a special routine before the rest of the inte-

gration proceeds. This routine first carries the integra-

tions from the entering boundary to the exiting boundary.

If a cell face with known intensities is reached, the com-

pleted intensity is stored to send back to the originating

processor. Otherwise, the exiting position, accumulated

transmission, and partial intensity integral are sent to the

neighboring processors. This intensity integration and

information passing is iterated until the discrete ordinate

integrations have finished on all processors, when sub-

domain boundary intensity values are exchanged with

all the other processors. Direct solar beam transmis-

sion integrations and the output intensity integrations

along the viewing directions are carried out in a similar

manner.

The parallel implementation of SHDOM does not

give exactly the same results as the serial version be-

cause of differences in the discrete ordinate integrations

in the iterative solver, which may be amplified by the

discrete nature of the cell-splitting decisions for the

adaptive grid. Differences between parallel and serial

solutions are small, however, compared to the overall

accuracy of the algorithm.

b. Efficiency of SHDOM on multiple processors

The parallel version of SHDOM can shorten the wall-

clock time to solution but it increases the total amount of

calculation required. There are three sources of extra

computation: the repeated grid points at the edge of

each subdomain, the time processors spend passing data

to each other or waiting for other processors to syn-

chronize, and the extra effort (described in the last

section) required for tracing the discrete ordinate in-

tensities. All sources of overhead are reduced (in a

fractional sense) by making the subdomains as large

as possible, so that the ratio of edge points to interior

points is small.

The amount of time used by SHDOM running on

multiple processors relative to a single processor de-

pends on the problem being solved, the number of

processors used, and various aspects of the computa-

tional architecture. Figure 4 shows results for two widely

available architectures: a shared-memory system using

two processors with four cores each and a distributed-

memory supercomputer. Radiative transfer is computed

for the stratocumulus cloud field described in the next

section using a base grid of 128 3 128 3 41 points and

resolution parameters taken from run 4F (described

in Table 2). Figure 4 shows the ratio of the total CPU

time used, relative to that used by a single processor, as a
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function of the number of processors used. (Uncon-

trollable issues cause small random variations in this

ratio.) For both architectures the total CPU time used

increases significantly above some number of processors

as the additional costs described in the last paragraph

become noticeable. Note that the algorithm used for do-

main decomposition minimizes the number of boundary

points when the number of processors is an integer

squared (when the domain is mapped as
ffiffiffiffiffiffiffi
Np

p
3

ffiffiffiffiffiffiffi
Np

p
processors) and maximizes the number of boundary

points when the number of processors is a prime (when

the domain is mapped as Np 3 1 processors).

Processor loads may become unbalanced if the optical

properties in the subdomains, and hence the density of in-

ternal grid points, vary significantly. To use computational

resources more efficiently, a load balancing procedure

may be enabled. This procedure uses the number of

base and adaptive grid points from a fast, low-angular-

resolution run to adjust the subdomain boundaries so

that the number of points is roughly the same among

processors. Load balancing can also be used to account

for nonuniform processor speeds.

4. Two prototype problems

We illustrate the solution characteristics of explicit

and Monte Carlo methods using two cloud fields pro-

duced by large-eddy simulations as prototype prob-

lems. One is a 3.5-km-square domain, 1 km deep, filled

with stratocumulus clouds; this scene was used in phase

II of the I3RC intercomparisons (Cahalan et al. 2005).

The second is a field of scattered cumulus over the

ocean from simulations made by Stevens and Seifert

(2008). The original domain is 3 km deep and 19.2 km

on a side; in these calculations we use a 4.8-km-square

subset of this domain chosen to minimize the number

of cloudy pixels along the edge. This subdomain has a

vertically projected cloud fraction of 14.8%. (Figure 9

shows images of these fields from high-resolution cal-

culations with SHDOM and the I3RC Monte Carlo

model.)

For each cloud field we perform simulations at a

nonabsorbing wavelength in the visible (0.67 mm) and

at a mildly absorbing wavelength in the near-infrared

(2.13 mm). To convert cloud water content to optical

properties, we assume that cloud water is divided into

droplets whose sizes obey a gamma distribution with

effective variance 0.1. Effective radius in each is diag-

nosed from the liquid water content assuming constant

droplet number (72 cm23 for the stratocumulus, per the

I3RC case specification, and 70 cm23 for the cumulus,

per the simulation) with a minimum size of 4 mm. We

precompute single scattering properties (extinction cross

section, single scattering albedo, and scattering phase

function) as a function of drop size using Mie theory

and tabulate these values at 50 equally spaced values

of effective radius from 0.5 to 25 mm. Very few cells

have values of effective radius that exactly match one

of the tabulated values, so we interpolate the extinction

and single scattering albedo and choose the phase

function for the closest tabulated value of effective

radius.

The cumulus domain includes aerosols. We use prop-

erties obtained from the Aeronet station on Cape San

Juan during December 2005 and January 2006. We use

the highest optical aerosol optical depth observed dur-

ing this period, namely taerosol 5 0.233 at 0.675 microns;

at this time the Aeronet retrievals, when mapped onto a

lognormal size distribution, imply an effective radius

re 5 0.964 microns, lognormal standard deviation of

1.10, and complex index of refraction m 5 1.4 2 0.0029i.

We assumed a complex index of refraction of m 5 1.36 2

0.0020i at 2.13 microns; the optical thickness at this

wavelength is taerosol 5 0.2. The aerosols are distributed

uniformly throughout the 3-km-deep domain. Rayleigh

scattering is also included in the cumulus cloud fields for

the 0.67-mm simulations.

For all calculations the sun introduces radiation in the

direction m0 5 20.707, f 5 35. The flux is normalized to

1 on a horizontal plane. The surface is Lambertian with

albedo 0.05. We compute upwelling flux at the top of the

FIG. 4. Total computation time used by SHDOM as a function of

the number of processors. The dashed line is taken from a two-

processor, eight-core, shared-memory workstation; the solid line is

from a distributed-memory supercomputer. Cost is summed across

all processors and is expressed relative to the amount used for a

single processor. Scaling behavior is problem- and architecture-

dependent but degrades for large numbers of processors.
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domain, downwelling flux at the bottom of the domain,

and, for the calculation at 2.13 microns, flux divergence

(proportional to heating rate) within the domain. In-

tensity is computed at nine angles symmetric about na-

dir in the f 5 0 plane, corresponding to the viewing

angles of the Multiangle Imaging Spectroradiometer

(MISR) instrument, that is, at nadir and at m 5 (0.334,

0.5, 0.7, 0.898) for f 5 0 and f 5 180.

5. Accuracy and standard error using Monte Carlo
variance reduction methods

Section 2d described variance-reduction methods for

Monte Carlo methods that may be used to decrease the

standard error of the calculation at the cost of increased

bias. Both the amount of variance reduction and the bias

introduced depend in part on the aggressiveness with

which the techniques are applied, such that larger values

of sG and smaller values of Ne in Eq. (2), or smaller

values of the maximum allowed local estimate zmax [for

the method described in section 2d(2)], tend to increase

bias and make the results less variable. But both cost

(increased bias) and benefit (decreased variance) also

depend on the relative frequency with which large con-

tributions to the local estimate are encountered, since this

determines how effective the reduction can be; this de-

pends in turn on the distribution of optical properties

within the domain and the geometry of the problem being

solved (i.e., the angle between incoming solar radiation

and each of the angles at which intensity is computed).

Thus, neither cost nor benefit can be predicted a priori

and the choice of parameters is necessarily somewhat

subjective.

We explore the performance of the two variance re-

duction methods described in section 2d in both proto-

type scenes over a range of parameters detailed in Table 1.

The runs are specified more fully in section 7; most rel-

evant here is that calculations using 10n, n 5 (6, 7, 8, 9)

samples are compared to benchmark results using 1010

samples.

Both variance reduction methods reduce the error in

intensity calculations to some degree at most resolutions

(see Fig. 5). On its own, the spatial redistribution of large

local estimates (run A) is more effective in the strato-

cumulus scene than in the cumulus where the cloud

fraction, and hence the area over which excess contri-

butions can be spread, is small. Spatial redistribution

alone has less effect when the number of samples (and

the computation time) is large. Using any form of the

hybrid phase function [Eq. (2)] decreases the error by

a factor of 3 or more, which is roughly equivalent to

computing 10 times as many samples. More aggressive

settings are more effective at low sample numbers, but

the error decrease becomes less sensitive to the pa-

rameters when 109 trajectories are used.

But this reduced error comes at a cost. Monte Carlo

estimates of uncertainty, as measured by the standard

error of multiple subcalculations, are almost perfect

estimates of the true RMS error when unbiased methods

are used (i.e., the circles in Fig. 6 lie on the 1:1 line), but

this agreement is lost when variance reduction methods

are used (letters in Fig. 6). This occurs when the Monte

Carlo noise becomes smaller than the bias introduced by

modifying the phase function or local estimate; in these

calculations this is evident in all of the highest trajectory-

count (lowest error) calculations and, for some param-

eter sets, for runs using 108 samples. (The standard error

of the benchmark runs is 3–30 times smaller than the

RMS of the calculations using variance reduction, so the

disagreement cannot be attributed to sampling error.)

Whether these small biases are acceptable or not de-

pends on the application.

TABLE 1. Runs used to assess the performance of variance reduction methods for intensity in two prototype problems. Variables sG

and Ne are defined in Eq. (2), while zmax is the maximum allowed value of the local estimate; we follow Barker et al. (2003) and set zmax 5

f(1 1 g)/4(1 2 g)2 with g 5 0.85 and f ’ 3. Error is measured as the RMS over all pixels and nine viewing angles relative to a benchmark

calculation using 1010 trajectories. All variance reduction methods are biased estimators, meaning that standard error (std err) under-

estimates the true Monte Carlo sampling error.

Case sG (8) Ne zmax

Error (3102) using 109 trajectories

Stratocumulus Cumulus

RMS Std Err RMS Std Err

O — — — 3.01 2.91 0.48 0.46

a — — 75 3.02 1.19 0.50 0.33

b 5 — — 1.22 0.73 0.25 0.20

c 9 — — 1.21 0.50 0.23 0.14

d 5 3 — 1.39 1.04 0.29 0.25

e 9 3 — 1.31 0.90 0.27 0.21

f 5 3 75 1.23 0.75 0.27 0.22

g 9 3 75 1.14 0.53 0.25 0.18
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6. Resolution, cost, and accuracy using SHDOM

For any given problem, the computational cost and

accuracy of the SHDOM algorithm depend primarily on

the angular and spatial resolution used in the simulation.

Calculations are most efficient when these resolutions

are well matched. We illustrate this point using a series

of calculations at 0.67 microns for the two prototype

problems described in the previous section.

SHDOM angular resolution is specified by the num-

ber of discrete ordinates in zenith angle (Nm) and azi-

muthal angle (Nf); often these are chosen to ensure

isotropic angular resolution (i.e., Nf 5 2Nm). Spatial

accuracy is specified by the number of grid points in

the base grid (Nx 3 Ny 3 Nz, Ny 5 Nx) and by the

splitting accuracy, which controls how many adaptive

grid points are produced. We perform simulations using

six values of angular resolution parameters (numbers

1 to 6) and eight values of spatial resolution, five (sets

A–E) in which the base grid matches the grid on which

optical properties are defined and three (sets F, G, and

H) in which the base grid is roughly twice as dense in

the horizontal. This results in 48 simulations for each

problem. Simulations are divided among a number of

processors approximately proportional to the memory

required; this number ranges from 1 to 64. The solution

accuracy is 1025 and sequence acceleration is used during

solution iterations. Load balancing is not used: the stra-

tocumulus field is relatively uniform, while the low cloud

fraction of the cumulus field results in a small proportion

of adaptive grid points. (Using load balancing for the

FIG. 5. Error in directional reflectance (intensity) calculations as

a function of computation time for Monte Carlo methods with

(letters a–g) and without (circles) variance reduction techniques.

Errors on the left-hand axis are normalized by the domain-mean

value in each direction before taking the RMS over all directions

and all pixels. Both axes are logarithmic. Letters refer to param-

eter sets detailed in Table 1. Slightly modifying the phase function

used for local estimation (letters b–g) decreases error by roughly

the same amount as increasing the number of trajectories by a

factor of 10.

FIG. 6. True error in directional reflectance (intensity) calcula-

tions, estimated by comparison with an unbiased benchmark, as a

function of standard error estimate for Monte Carlo calculations with

(letters) and without (circles) the use of biased variance reduction

methods. Both axes are logarithmic. The two estimates agree when

the computation time is low and the Monte Carlo noise dominates

the error, but when large numbers of trajectories are used the bias

caused by modifying the local estimate calculation emerges.

3140 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66



cumulus field at resolution 5E, for example, resulted in a

10% CPU time improvement for 16 processors.)

Accuracy is assessed by comparison to the run with

the highest spatial and angular resolution (run 6H).

Figure 7 shows the accuracy in intensity calculations for

both scenes, measured as the RMS error over every grid

point and every angle; Fig. 8 shows analogous results for

upwelling and downwelling fluxes at the top and bottom

of the stratocumulus scene.

For the stratocumulus scene, errors in intensity de-

crease rapidly with decreasing splitting accuracy for any

given angular resolution, then remain roughly constant

as angular resolution dominates the error. Error in-

creases at resolution F relative to E at higher angular

resolutions because the splitting accuracy relaxes (from

0.02 to 0.03) while the base grid resolution increases.

For the cumulus scene, adaptive cell splitting sub-

stantially improves accuracy in intensity calculations

at little computational cost for high-angular-resolution

(Nm $ 16) calculations. This is because cells are split

only in the small fraction of the domain that is cloudy.

Doubling the spatial resolution of the base grid (runs F

and G) results in a fivefold increase in computational

cost with almost no gain in accuracy; this is also true for

flux (not shown).

The relationships between resolution, cost, and error

in calculations of upwelling flux for the stratocumulus

FIG. 7. Error in directional reflectance (intensity) computed

using SHDOM as a function of total computation time for the

stratocumulus and cumulus scenes. Both axes are logarithmic.

Letters refer to spatial resolution and numbers (and line types) to

angular resolution detailed in Table 2. Error is computed as the

RMS difference over all directions and all pixels from the

benchmark (6H) calculation. Values on the left axis are computed

by normalizing the error by the domain mean in each direction

before computing the RMS over directions; the right axis shows

the RMS over direction of the raw error. When calculations in the

cumulus scene use low angular resolution (cases 1–4), increased

spatial resolution increases computation time without increasing

accuracy, so points A–E are clustered to the left and F–H are on

the right.

FIG. 8. Error in flux calculations, measured as the RMS dif-

ference from the benchmark (resolution 6H) over all pixels, as a

function of total CPU time in the stratocumulus scene for up-

welling flux at the domain top and downwelling flux at the surface.

The RMS flux difference normalized by the domain mean flux is

shown on the left axis; absolute values are on the right. Accuracy in

downwelling flux depends mostly on angular resolution; accuracy

in upwelling flux depends on spatial resolution as well.
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scenes (Fig. 8) are qualitatively similar to those for in-

tensity, although the base grid resolution is more im-

portant. This is a result of how the algorithm operates:

SHDOM calculates gridpoint fluxes from the discrete

ordinate intensities during the solution iteration, so the

base grid resolution in clear sky is important to the flux

accuracy at the top and bottom of the domain because

there are no adaptive grid cells in the clear areas. In-

tensity is calculated after the solution iterations by in-

tegrating the source function, so the clear sky is not

important, and accuracy in intensity is controlled by the

splitting accuracy.

Accuracy in downwelling flux at the surface, how-

ever, is almost entirely controlled by angular resolu-

tion, and increases in spatial resolution only increase

the computational time. This is because the down-

welling radiation has more angular structure (from low

orders of scattering of the direct solar beam), and so

requires higher angular resolution to capture, than

does upwelling radiation. However, diffuse radiation

at cloud base is much less spatially variable than at

cloud top, so spatial resolution has little influence on

accuracy.

7. Relative efficiency of Monte Carlo and SHDOM

In this section we address a practical question: given a

choice between SHDOM and the I3RC model, which

code provides the most efficient path to solution of a given

radiative transfer problem? The more efficient model, in

this context, is the one that produces the lowest error for

a given computational cost. We answer this question by

performing identical calculations with both models at a

range of resolutions and comparing the relationships

between error and computational cost for a range of

quantities.

We select subsets of the SHDOM resolution param-

eters described in Table 2, using different parameter

sets for the stratocumulus case (1A, 2B, 3C, 4D, 5G) and

the cumulus case (1C, 2C, 3B, 4C, 5D). For both sets of

calculations, resolution 6H provides the benchmark.

Monte Carlo calculations use ray tracing for radiation

transport and employ Russian roulette reweighting of

weak samples. Results for flux and flux divergence use

relatively fast simulations in which intensity is not

computed. Russian roulette is also employed in inten-

sity calculations. Monte Carlo resolution is essentially

determined by the number of trajectories. For flux

calculations we compare results for 10n, n 5 (6, 7, 8)

samples with a benchmark calculation using 109 samples;

benchmarks for intensity calculations use 1010 samples.

Example benchmark intensity calculations are shown

in Fig. 9. The benchmark calculations agree to within a

few tenths of a percent for most quantities (see Table 3).

Some of the remaining differences are rooted in the al-

gorithms themselves. Although we have specified the

same distribution of optical properties for both radiative

transfer models, SHDOM and the I3RC Monte Carlo

model solve slightly different problems: SHDOM as-

sumes that the medium varies linearly between cell

corners, whereas the Monte Carlo model assumes that

cells are internally uniform with discontinuous jumps at

cell boundaries.

Figure 10 shows the error in flux calculations, mea-

sured as the root-mean-square over all pixels normal-

ized by the domain mean, as a function of total time to

solution for both models and both scenes. Both axes are

logarithmic so the Monte Carlo error, which decreases

as the inverse square root of the solution time, appears

as a straight line. Monte Carlo standard error estimates

(not shown) agree almost perfectly with the true error.

Both models produce larger errors for the cumulus

scene than for the stratocumulus because the domain is

larger. SHDOM becomes more efficient than Monte

Carlo in computing upwelling fluxes for the cumulus

scene as the resolution increases but is increasingly less

efficient for the stratocumulus case. Figure 11 shows the

relationships between computational time and the error

in flux divergence calculations at 2.13 mm, measured as

the RMS over all cells in the domain and normalized by

the domain-mean profile. Absolute values of flux di-

vergence are much smaller in the cumulus scene than in

the stratocumulus, so both models produce lower errors

in the cumulus field.

The two models produce roughly comparable errors

in spatially resolved flux and flux divergence for a given

computational cost. The cell splitting employed by

SHDOM is a particular advantage in the cumulus field

because grid resolution is high in a small portion of the

domain. SHDOM errors in downward flux decrease slowly

with computation time in the stratocumulus cloud field

because there is no way except high angular resolution to

resolve the angular dependence of the downwelling flux.

TABLE 2. Angular and spatial resolutions used in SHDOM

calculations.

Stratocumulus Cumulus Splitting

accuracyAngular Nm Spatial Nx Nz Nx Nz

1 4 A 64 21 96 100 0.30

2 6 B 64 21 96 100 0.10

3 8 C 64 21 96 100 0.05

4 12 D 64 21 96 100 0.03

5 16 E 64 21 96 100 0.02

6 32 F 128 41 192 151 0.03

— — G 128 41 192 151 0.02

— — H 128 41 192 151 0.015
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For a given time to solution, accuracy for pixel-level

fluxes for SHDOM and Monte Carlo methods are within

a factor of 10, but for pixel-level intensity calculations

SHDOM is much more efficient. Figure 12 shows the

error in these calculations, expressed as the root-mean-

square over all pixels in all nine directions and normalized

by the domain-mean independently in each direction,

for both models. Monte Carlo results are provided for

unbiased calculations and for an example computed

using Eq. (2) with parameters from run D in Table 1

(sG 5 58 and Ne 5 3). Using the hybrid phase function

reduces the error substantially but, as we showed in Fig. 6,

estimates of the uncertainty (downward-pointing trian-

gles) are biased at the highest resolutions relative to the

true error (upward-pointing triangles). Our choice of

parameters from Table 1 was conservative, but even the

most aggressive application of variance reduction can-

not reduce the Monte Carlo error for a given compu-

tational cost to values approaching SHDOM.

Errors in Monte Carlo estimates of domain-average

intensity are smaller by a factor of 1/
ffiffiffiffiffiffiffiffiffi
Nx,y

q
, where Nx,y

is the number of pixels (642 for the stratocumulus scene

FIG. 9. Nadir reflectance (intensity times p) for the two scenes described in section 4 computed with the (left) I3RC

Community Monte Carlo model and (right) SHDOM. Differences between the two models are quantified in Table 3;

in most cases they are a fraction of a percent of the incoming solar flux.

TABLE 3. Absolute differences between benchmark runs using SHDOM and the I3RC Community Monte Carlo model. Reflectance

bias are the RMSE over the nine directions at which intensity is computed. Most differences are less than 1%. Monte Carlo estimates of

the standard error are shown for comparison.

Stratocumulus (3103) Cumulus (3103)

Bias RMS error MC std. err. Bias RMS error MC std. err.

Flux up 23.72 5.00 1.26 1.21 1.64 0.62

Flux down 2.38 24.97 1.62 1.29 8.80 2.04

Reflectance 1.30 3.99 2.94 0.46 1.08 0.47
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and 962 for the cumulus), whereas errors for SHDOM

the errors remain roughly constant. This implies that the

two methods are about equally efficient at computing

domain-averaged intensity.

Time to solution is not the only computational cost; the

amount of memory required may also be a constraint.

Explicit methods such as SHDOM must store the com-

plete five-dimensional radiation field, which can be a sig-

nificant burden at high resolution. Figure 13 compares the

memory and computation time used by SHDOM and

Monte Carlo for each of our two scenes. SHDOM mem-

ory use increases steadily with CPU time, covering a range

of almost 500 for the stratocumulus scene resolutions used

in Fig. 13. Note that if aerosols are omitted from the cu-

mulus scene, the adaptive spherical harmonic truncation

in SHDOM becomes effective and memory use drops

by a factor of 3.5. For the highest-resolution calculation

on the cumulus scene, SHDOM uses 71Gb of memory,

demonstrating that SHDOM resolution may be limited

by memory constraints, especially on smaller computers,

long before computation time becomes an issue.

Monte Carlo memory use in Fig. 13 is for runs in which

intensity is calculated; runs in which only radiation

transport is computed use about 15%–30% of this amount.

For each scene, increases in memory use reflect only the

number of processors used in the calculation, which

ranged from 4 to 44; this number was chosen to make

the most efficient use of supercomputer resources (i.e.,

we used the smallest integer multiple of four proces-

sors that would allow the calculation to finished in less

than 8 h). In principle, however, all Monte Carlo cal-

culations could be done on a single processor using the

amount of memory indicated by the horizontal lines,

trading decreased memory use for an increase in the

elapsed time to solution.

8. Matching tools to tasks

Either explicit or Monte Carlo methods can be used

to solve a given three-dimensional radiative transfer

FIG. 10. Error in flux at 0.67 mm as a function of total computation

time for calculations with the I3RC Community Monte Carlo model

(solid lines) and SHDOM (dashed lines). Results are shown for flux

(top) up at the top of the domain and (bottom) down at the domain

base; in both panels filled symbols refer to the stratocumulus scene

and open symbols to the cumulus scene. Error is the RMS over all

columns in the domain, normalized by the domain mean and as-

sessed by comparison with a benchmark calculation. Monte Carlo

results for flux use radiation transport calculations only.

FIG. 11. Error in flux divergence at 2.13 mm as a function of total

computation time for calculations with the I3RC Community

Monte Carlo model (circles) and SHDOM (squares). Error is the

RMS over all cells in the domain, normalized by the domain mean

and assessed by comparison with a benchmark calculation. Both

axes are logarithmic.
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problem and the methods are in very good agreement

(see, e.g., Table 3) when sufficient computational re-

sources are available. But even low-resolution, high-

error calculations are very computationally expensive, so

identifying the most efficient solution method may be

important. The results in section 7 provide some guidance

in choosing the most efficient tool for a given problem.

SHDOM and Monte Carlo methods are roughly

equally efficient at computing pixel-level fluxes and cell-

by-cell flux divergence. SHDOM does better when

computing upward flux in a medium where optically

thick regions (t . 1) are sparse, as in our cumulus ex-

ample. Monte Carlo is somewhat superior for computing

downwelling flux, since SHDOM requires high angular

resolution to resolve the low orders of scattering. Be-

cause Monte Carlo errors are uncorrelated in space (i.e.,

between pixels), the Monte Carlo method is much more

efficient at computing domain-average fluxes and flux

divergence profiles than SHDOM.

SHDOM is vastly more efficient than Monte Carlo

methods for computing pixel-by-pixel intensity when

intensity in multiple directions is required. Accuracy im-

provements from variance reduction techniques are sig-

nificant but modest compared to this difference. SHDOM

and Monte Carlo are comparably efficient at computing

domain-average intensity in a range of directions. In the

special case that a single intensity is computed, partic-

ularly in the nadir direction, the difference is less stark

(see Fig. 2).

These results apply to quasi-monochromatic calcula-

tions. Many applications, however, require integration

over some portion of the electromagnetic spectrum.

Two common examples are the calculation of broad-

band fluxes for energy balance problems and the cal-

culation of narrowband intensities for remote sensing

problems. The latter calculations are typically made in

narrow spectral regions (‘‘bands’’) in which the optical

properties of most constituents can be considered con-

stant, requiring only the use of a k-distribution to treat

gaseous absorption within the band. Broadband calcu-

lations require calculations in a series of bands.

Monte Carlo methods can include spectral integration

within or across bands at very little cost by dividing

samples among spectral intervals, whereas SHDOM

must perform a series of independent calculations. (To

avoid uncommon but severe errors, SHDOM has been

changed and now uses an independent initialization for

each k in a distribution.) SHDOM’s convergence rate

FIG. 12. RMSE in directional reflectance (normalized by the

domain mean in each direction) at 0.67 mm as a function of total

computation time for calculations with SHDOM (dashed lines) and

the I3RC Community Monte Carlo model with (dotted lines) and

without (solid lines) biased variance reduction methods. Closed

symbols denote results for the stratocumulus scene; open symbols,

the cumulus scene. The variance reduction method decreases the

error but, at the highest resolutions, the standard error (upward-

pointing triangles) underestimates the true error (downward-

pointing triangles). For pixel-by-pixel reflectance SHDOM is

substantially more efficient than Monte Carlo.

FIG. 13. Relationships between memory and computation time

for the I3RC Community Monte Carlo model (solid lines) and

SHDOM (dashed lines) for the stratocumulus (closed symbols)

and cumulus (open symbols) scenes. Both memory and computa-

tion time increase with accuracy for SHDOM. This need not be

true for Monte Carlo calculations, and the dotted lines show the

memory required for a single processor. As a practical matter,

however, we increased the amount of memory by using more

processors to keep the wall-clock time to solution less than 8 h.

Memory requirements for SHDOM are reduced substantially for

the cumulus scene when aerosols are omitted (plus sign).
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increases with the amount of absorption, so that com-

putation time increases less than linearly with the num-

ber of k. Assuming even O(10) k per band, SHDOM

remains much more efficient for remote sensing prob-

lems requiring pixel-scale intensity values. Monte Carlo

methods can become comparable if substantial spatial

averaging of the pixel-level narrowband intensities was

required (e.g., for computing the signal at a remote sensor

with spatial resolution on the order of kilometers), and

they are substantially more efficient for broadband

problems. Since the two models are comparably efficient

at computing monochromatic grid cell flux divergence,

Monte Carlo methods are therefore much more efficient

at computing the broadband flux divergence needed for

coupling to dynamical models.

These generalizations apply when the grid spacing is

smaller than the radiation mean free path (i.e., when the

3D radiative transfer is resolved). On the coarser reso-

lution grids such as those typical of cloud-resolving

models, SHDOM must employ significant cell splitting,

so Monte Carlo methods may become substantially

more efficient at computing pixel-by-pixel fluxes.

Efficiency may not be the only consideration in choos-

ing a model, especially where the two methods are com-

parable. Monte Carlo methods are particularly simple to

use: a single parameter controls accuracy and the uncer-

tainty in (unbiased) calculations is known. Alternatively,

calculation can be performed until some specified accur-

acy is reached. In this way, Monte Carlo techniques re-

quire less sophistication on the part of the user.
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